Câu hỏi

Tập tất cả giá trị của tham số \(m\) để hàm số \(y = {x^3} - 3m{x^2} + 3x + 1\) đồng biến trên \(\mathbb{R}\) là

  • A \(\left[ { - 1;\,1} \right]\).         
  • B \(m \in \left( { - \infty ;\, - 1} \right] \cup \left[ {1;\, + \infty } \right)\).
  • C \(\left( { - \infty ;\, - 1} \right) \cup \left( {1;\, + \infty } \right)\).
  • D \(\left( { - 1;\,1} \right)\).

Phương pháp giải:

Hàm số bậc ba đồng biến trên \(\mathbb{R}\) nếu và chỉ nếu \(a > 0\) và phương trình \(y' = 0\) vô nghiệm hoặc có nghiệm kép.

Lời giải chi tiết:

Hàm số đã cho là hàm số bậc ba có \(a = 1 > 0\), có: \(y' = 3{x^2} - 6mx + 3\).

Do đó nó đồng biến trên \(\mathbb{R}\) nếu và chỉ nếu phương trình \(y' = 0\) vô nghiệm hoặc có nghiệm kép \( \Leftrightarrow \Delta ' = 9{m^2} - 9 \le 0 \Leftrightarrow  - 1 \le m \le 1\).

Vậy \(m \in \left[ { - 1;1} \right]\).

Chọn A.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay