Câu hỏi
Có bao nhiêu giá trị \(m\) nguyên thuộc khoảng \(\left( { - 10;10} \right)\) để đồ thị hàm số \(y = \frac{{\sqrt {x\left( {x - m} \right)} - 1}}{{x + 2}}\) có dúng ba đường tiệm cận?
- A \(12\)
- B \(11\)
- C \(0\)
- D \(10\)
Phương pháp giải:
Tìm tiệm cận ngang của đồ thị hàm số, từ đó suy ra điều kiện để bài toán thỏa.
Lời giải chi tiết:
Ta có:
\(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {x\left( {x - m} \right)} - 1}}{{x + 2}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{x\sqrt {1 - \frac{m}{x}} - 1}}{{x + 2}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {1 - \frac{m}{x}} - \frac{1}{x}}}{{1 + \frac{2}{x}}} = 1\) hay \(y = 1\) là đường tiệm cận ngang của đồ thị hàm số.
\(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {x\left( {x - m} \right)} - 1}}{{x + 2}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - x\sqrt {1 - \frac{m}{x}} - 1}}{{x + 2}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - \sqrt {1 - \frac{m}{x}} - \frac{1}{x}}}{{1 + \frac{2}{x}}} = - 1\) hay \(y = - 1\) là đường tiệm cận ngang của đồ thị hàm số.
Do đó bài toán thỏa \( \Leftrightarrow \) đồ thị hàm số chỉ có duy nhất một tiệm cận đứng.
Ta lại có: \(y = \dfrac{{\sqrt {x\left( {x - m} \right)} - 1}}{{x + 2}} = \dfrac{{{x^2} - mx - 1}}{{\left( {x + 2} \right)\left( {\sqrt {x\left( {x - m} \right)} + 1} \right)}}\).
Để đồ thị hàm số chỉ có duy nhất một đường TCĐ thì \(x = - 2\) không là nghiệm của tử và \(x = - 2\) thuộc tập xác định của hàm số.
\( \Leftrightarrow \left\{ \begin{array}{l} - 2\left( { - 2 - m} \right) \ge 0\\{\left( { - 2} \right)^2} - m.\left( { - 2} \right) - 1 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ge - 2\\2m + 3 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ge - 2\\m \ne - \frac{3}{2}\end{array} \right.\).
Do \(m \in \left( { - 10;10} \right),m \in \mathbb{Z}\) nên \(m \in \left\{ { - 2; - 1;0;1;...;8;9} \right\}\) và có \(12\) giá trị thỏa mãn.
Chọn A.