Câu hỏi
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ. Số nghiệm của phương trình \(2f\left( x \right) - 3 = 0\) là:
- A 1
- B 2
- C 3
- D 0
Phương pháp giải:
Số nghiệm của phương trình \(f\left( x \right) = m\) là số giao điểm của đồ thị hàm số \(y = f\left( x \right)\) và đường thẳng \(y = m\) song song với trục hoành.
Lời giải chi tiết:
Ta có: \(2f\left( x \right) - 3 = 0 \Leftrightarrow f\left( x \right) = \dfrac{3}{2}\). Khi đó số nghiệm của phương trình là số giao điểm của đồ thị hàm số \(y = f\left( x \right)\) và đường thẳng \(y = \dfrac{3}{2}\) song song với trục hoành.
Dựa vào đồ thị hàm số ta thấy đường thẳng \(y = \dfrac{3}{2}\) cắt đồ thị hàm số \(y = f\left( x \right)\) tại 3 điểm phân biệt. Vậy phương trình \(2f\left( x \right) - 3 = 0\) có 3 nghiệm phân biệt.
Chọn C.