Câu hỏi

Cho hàm số \(y = \frac{{1 - x}}{{{x^2} - 2mx + 4}}\) . Tìm tất cả các giá trị thực của tham số \(m\) để đồ thị hàm số có ba đường tiệm cận.

  • A \(\left\{ \begin{array}{l}\left[ \begin{array}{l}m > 2\\m <  - 2\end{array} \right.\\m \ne \frac{5}{2}\end{array} \right.\) 
  • B \(\left\{ \begin{array}{l}m > 2\\m \ne \frac{5}{2}\end{array} \right.\) 
  • C \( - 2 < m < 2\)   
  • D \(\left[ \begin{array}{l}m <  - 2\\m > 2\end{array} \right.\)

Phương pháp giải:

Cho hàm số \(y = f\left( x \right)\).

+) Nếu \(\mathop {\lim }\limits_{x \to \infty } y = {y_0} \Rightarrow y = {y_0}\) là TCN của đồ thị hàm số.

+) Nếu \(\mathop {\lim }\limits_{x \to {x_0}} y = \infty  \Rightarrow x = {x_0}\) là TCĐ của đồ thị hàm số.

Lời giải chi tiết:

Ta có:

\(\mathop {\lim }\limits_{x \to  \pm \infty } y = \mathop {\lim }\limits_{x \to  \pm \infty } \frac{{1 - x}}{{{x^2} - 2mx + 4}} = \mathop {\lim }\limits_{x \to  \pm \infty } \frac{{\frac{1}{{{x^2}}} - \frac{1}{x}}}{{1 - \frac{{2m}}{x} + \frac{4}{{{x^2}}}}} = 0 \Rightarrow y = 0\) là TCN của đồ thị hàm số.

Do đó để đồ thị hàm số có 3 đường tiệm cận thì đồ thị hàm số có 2 đường tiệm cận đứng.

\( \Rightarrow \) Phương trình \(f\left( x \right) = {x^2} - 2mx + 4 = 0\) có 2 nghiệm phân biệt khác 1.

\( \Leftrightarrow \left\{ \begin{array}{l}\Delta ' = {m^2} - 4 > 0\\f\left( 1 \right) = 1 - 2m + 4 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m > 2\\m <  - 2\end{array} \right.\\m \ne \frac{5}{2}\end{array} \right.\)  .

Chọn A.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay