Câu hỏi

Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\). Cạnh bên \(SA = a\sqrt 6 \) và vuông góc với đáy \(\left( {ABCD} \right)\). Tính theo \(a\) diện tích mặt cầu ngoại tiếp khối chóp \(S.ABCD\).

  • A \(8\pi {a^2}\)
  • B \({a^2}\sqrt 2 \)
  • C \(2\pi {a^2}\)
  • D \(2{a^2}\)

Phương pháp giải:

Hình chóp có cạnh bên vuông góc với đáy, sử dụng công thức tính nhanh bán kính mặt cầu ngoại tiếp chóp \(R = \sqrt {\frac{{{h^2}}}{4} + R_{day}^2} \).

Lời giải chi tiết:

Bán kính đường tròn ngoại tiếp hình vuông \(ABCD\) cạnh \(a:\;\;R = \frac{{a\sqrt 2 }}{2}.\)

Hình chóp có cạnh bên vuông góc với đáy, sử dụng công thức tính nhanh bán kính mặt cầu ngoại tiếp chóp \(R = \sqrt {\frac{{{h^2}}}{4} + R_{day}^2}  = \sqrt {{{\left( {\frac{{a\sqrt 6 }}{2}} \right)}^2} + {{\left( {\frac{{a\sqrt 2 }}{2}} \right)}^2}}  = a\sqrt 2 \).

Vậy diện tích mặt cầu là \(S = 4\pi {R^2} = 4\pi {\left( {a\sqrt 2 } \right)^2} = 8\pi {a^2}\).

Chọn A.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay