Câu hỏi
Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\backslash \left\{ 1 \right\}\) và có bảng biến thiên như hình dưới đây
Tập hợp \(S\) tất cả các giá trị của m đề phương trình \(f\left( x \right) = m\) có đúng ba nghiệm thực là
- A \(S = \left( { - 1;1} \right)\)
- B \(S = \left\{ { - 1;1} \right\}\)
- C \(\left[ { - 1;1} \right]\)
- D \(S = \left\{ 1 \right\}\)
Phương pháp giải:
Số nghiệm của phương trình \(f\left( x \right) = m\) là số giao điểm của đồ thị hàm số \(y = f\left( x \right)\) và đường thẳng \(y = m\) song song với trục hoành.
Lời giải chi tiết:
Số nghiệm của phương trình \(f\left( x \right) = m\) là số giao điểm của đồ thị hàm số \(y = f\left( x \right)\) và đường thẳng \(y = m\) song song với trục hoành.
Dựa vào BBT ta thấy, phương trình \(f\left( x \right) = m\) có đúng 3 nghiệm thực khi và chỉ khi \(m = \pm 1\).
Vậy \(S = \left\{ { - 1;1} \right\}\).
Chọn B.