Câu hỏi
Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và \(y = f'\left( x \right)\) có đồ thị như hình vẽ. Phương trình \(f\left( x \right) = m\) (\(m\) là tham số) có nhiều nhất bao nhiêu nghiệm trong khoảng \(\left( { - 2;6} \right)\)?
- A 2
- B 4
- C 5
- D 3
Phương pháp giải:
Lập bảng biến thiên của hàm số \(y = f\left( x \right)\) và nhận xét số nghiệm chính là số giao điểm của đường thẳng \(y = m\) với đồ thị hàm số \(y = f\left( x \right)\).
Lời giải chi tiết:
Quan sát đồ thị hàm số \(y = f'\left( x \right)\) ta có bảng biến thiên của hàm số \(y = f\left( x \right)\) trong khoảng \(\left( { - 2;6} \right)\) như sau:
Quan sát bảng biến thiên ta thấy đường thẳng \(y = m\) có thể cắt đồ thị hàm số \(y = f\left( x \right)\) tại nhiều nhất \(4\) điểm trong khoảng \(\left( { - 2;6} \right)\).
Vậy phương trình \(f\left( x \right) = m\) có nhiều nhất \(4\) nghiệm trong khoảng \(\left( { - 2;6} \right)\).
Chọn B.