Câu hỏi
Thầy Tuấn có 15 cuốn sách gồm 4 cuốn sách Toán , 5 cuốn sách Lý và 6 cuốn sách Hóa. Các cuốn sách đôi một khác nhau. Thầy chọn ngẫu nhiên 8 cuốn sách để làm phầnt hưởng cho một học sinh. Tính xác suất để số cuốn sách còn lại thầy Tuấn còn đủ 3 môn.
- A \(\frac{{54}}{{715}}\)
- B \(\frac{{661}}{{715}}\)
- C \(\frac{{2072}}{{2145}}\)
- D \(\frac{{73}}{{2145}}\)
Phương pháp giải:
Tính xác suất của biến cố đối: \(P\left( A \right) = 1 - P\left( {\overline A } \right).\)
Lời giải chi tiết:
Số phần tử của không gian mẫu là: \({n_\Omega } = C_{15}^8.\)
Gọi biến cố A: “Số cuốn sách còn lại của thầy Tuấn có đủ cả ba môn”.
Khi đó ta có biến cố: \(\overline A :\) “Số cuốn sách còn lại của thầy Tuấn không có đủ cả 3 môn”.
Ta có các trường hợp xảy ra:
+) TH1: 7 cuốn sách còn lại chỉ có Toán và Lý. Số cách chọn là: \(C_9^7.\)
+) TH2: 7 cuốn sách còn lại chỉ có Lý và Hóa. Số cách chọn là: \(C_{11}^7.\)
+) TH3: 7 cuốn sách còn lại chỉ có Hóa và Toán. Số cách chọn là: \(C_{10}^7.\)
\( \Rightarrow P\left( A \right) = 1 - P\left( {\overline A } \right) = \frac{{C_9^7 + C_{11}^7 + C_{10}^7}}{{C_{15}^8}} = 1 - \frac{{54}}{{715}} = \frac{{661}}{{715}}.\)
Chọn B.