Câu hỏi

Trong truyện cổ tích Cây tre trăm đốt (các đốt được tính từ 1 đến 100), khi không vác được cây tre dài tận 100 đốt như vậy về nhà, anh Khoai ngồi khoác, Bụt liền hiện lên, bài cho anh ta: "Con hãy hô câu thần chú Xác suất, xác suất thì cây tre sẽ rời ra, con sẽ mang được về nhà". Biết rằng cây tre 100 đốt được tách ra một cách ngẫu nhiên thành các đoạn ngắn có chiều dài là 2 đốt và 5 đốt (có thể chỉ có một loại). Xác suất để có số đoạn 2 đốt nhiều hơn số đoạn 5 đốt đúng 1 đoạn gần với giá trị nào trong các giá trị dưới đây ?

  • A 0,142
  • B 0,152
  • C 0,132
  • D 0,122

Phương pháp giải:

+) Gọi số đoạn có chiều dài 2 đốt là x và số đoạn có chiều dài 5 đốt là y, lập hệ phương trình giải tìm x, y trong trường hợp x – y = 1, suy ra số kết quả thuận lợi cho biến cố " số đoạn 2 đốt nhiều hơn số đoạn 5 đốt đúng 1 đoạn",

+) Tính sộ bộ số \(\left( {x;y} \right)\) thỏa mãn \(2x + 5y = 100\,\,\left( {x,y \in N} \right)\), suy ra số phần tử của không gian mẫu.

+) Tính xác suất của biến cố.

Lời giải chi tiết:

Gọi số đoạn có chiều dài 2 đốt là x và số đoạn có chiều dài 5 đốt là y, ta có hệ phương trình \(\left\{ \begin{array}{l}2x + 5y = 100\\x - y = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 15\\y = 14\end{array} \right.\).

Gọi A là biến cố " số đoạn 2 đốt nhiều hơn số đoạn 5 đốt đúng 1 đoạn" \( \Rightarrow n\left( A \right) = 1\).

Xét các bộ số \(\left( {x;y} \right)\) thỏa mãn \(2x + 5y = 100\,\,\left( {x,y \in N} \right)\) ta có bảng sau:

 \( \Rightarrow n\left( \Omega  \right) = 11\).

Vậy \(P\left( A \right) = \dfrac{1}{{11}} \approx 0,09\).

Chọn D. 


Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay