Câu hỏi

 Cho hàm số \(y = {x^3} - 3\left( {m + 3} \right){x^2} + 3\) có đồ thị là \(\left( C \right)\). Tìm tất cả các giá trị của m sao cho qua điểm \(A\left( { - 1; - 1} \right)\) kẻ được đúng 2 tiếp tuyến đến \(\left( C \right)\), một tiếp tuyến là \({\Delta _1}:\,\,y =  - 1\) và tiếp tuyến thứ hai là \({\Delta _2}\) thỏa mãn: \({\Delta _2}\) tiếp xúc với \(\left( C \right)\) tại N đồng thời cắt \(\left( C \right)\) tại P (khác N) có hoành độ bằng 3.

  • A Không tồn tại thỏa mãn
  • B \(m = 2\)
  • C \(m = 0,\,\,m =  - 2\)
  • D  \(m =  - 2\)

Phương pháp giải:

+) Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ \(x = {x_0}\).

+) Từ giả thiết có một tiếp tuyến là \({\Delta _1}:\,\,y =  - 1\) tính được m.

+) Thử lại và kết luận.

Lời giải chi tiết:

TXĐ: \(D = R\), ta có \(y' = 3{x^2} - 6\left( {m + 3} \right)x\).

Phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ \(x = {x_0}\) là:

\(y = \left( {3x_0^2 - 6\left( {m + 3} \right){x_0}} \right)\left( {x - {x_0}} \right) + x_0^3 - 3\left( {m + 3} \right)x_0^2 + 3\,\,\left( d \right)\).

Có một tiếp tuyến là \({\Delta _1}:\,\,y =  - 1\)

\( \Rightarrow \left\{ \begin{array}{l}3x_0^2 - 6\left( {m + 3} \right){x_0} = 0\\x_0^3 - 3\left( {m + 3} \right)x_0^2 + 3 =  - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}{x_0} = 0\\{x_0} = 2\left( {m + 3} \right)\end{array} \right.\\x_0^3 - 3\left( {m + 3} \right)x_0^2 + 3 =  - 1\end{array} \right.\)

TH1: \({x_0} = 0 \Rightarrow 3 =  - 1\) (vô nghiệm).

TH2: \({x_0} = 2\left( {m + 3} \right) \Rightarrow 8{\left( {m + 3} \right)^3} - 3\left( {m + 3} \right).4{\left( {m + 3} \right)^2} + 4 = 0\)

\( \Leftrightarrow  - 4{\left( {m + 3} \right)^3} + 4 = 0 \Leftrightarrow {\left( {m + 3} \right)^3} = 1 \Leftrightarrow m + 3 = 1 \Leftrightarrow m =  - 2\).

Thử lại khi \(m =  - 2\), phương trình đường thẳng (d) trở thành \(y = \left( {3x_0^2 - 6{x_0}} \right)\left( {x - {x_0}} \right) + x_0^3 - 3x_0^2 + 3\,\,\left( d \right)\)

\(\begin{array}{l}A\left( { - 1; - 1} \right) \in \left( d \right) \Rightarrow  - 1 = \left( {3x_0^2 - 6{x_0}} \right)\left( { - 1 - {x_0}} \right) + x_0^3 - 3x_0^2 + 3\\ \Leftrightarrow  - 1 =  - 3x_0^2 + 6{x_0} - 3x_0^3 + 6x_0^2 + x_0^3 - 3x_0^2 + 3\\ \Leftrightarrow 2x_0^3 - 6{x_0} - 4 = 0 \Leftrightarrow \left[ \begin{array}{l}{x_0} = 2\\{x_0} =  - 1\end{array} \right.\end{array}\)

Phương trình có 2 nghiệm phân biệt, do đó từ A kẻ được 2 tiếp tuyến đến đồ thị hàm số khi \(m =  - 2\) (tm).

Vậy \(m =  - 2\).

Chọn A.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay