Câu hỏi

Gọi S là tập hợp tất cả các giá trị của m để hàm số \(y = {x^4} - 2m{x^2} + 2m + {m^4}\) có ba điểm cực trị đồng thời các điểm cực trị của đồ thị lập thành tam giác có bán kính đường tròn ngoại tiếp bằng 1. Tính tổng các phần tử của S.

  • A  \(\dfrac{{1 + \sqrt 5 }}{2}\)
  • B \(\dfrac{{2 + \sqrt 5 }}{2}\)
  • C \(0\)
  • D \(\dfrac{{3 + \sqrt 5 }}{2}\)

Phương pháp giải:

+) Tìm điều kiện để hàm số có 3 điểm cực trị. Xác định các điểm cực trị A, B, C của đồ thị hàm số.

+) Tính diện tích tam giác ABC, sử dụng công thức \({S_{\Delta ABC}} = \dfrac{1}{2}d\left( {A;BC} \right).BC\).

+) Sử dụng công thức \({S_{\Delta ABC}} = \dfrac{{AB.AC.BC}}{{4R}}\) trong đó R là bán kính đường tròn ngoại tiếp tam giác ABC.

Lời giải chi tiết:

TXĐ: \(D = R\). Ta có: \(y' = 4{x^3} - 4mx = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\{x^2} = m\end{array} \right.\).

Để hàm số có 3 điểm cực trị thì phương trình \(y' = 0\) có 3 nghiệm phân biệt \( \Leftrightarrow m > 0\).

Khi đó ta có: \(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0 \Rightarrow y = 2m + {m^4} \Rightarrow A\left( {0;2m + {m^4}} \right)\\x = \sqrt m  \Rightarrow y = {m^4} - {m^2} + 2m \Rightarrow B\left( {\sqrt m ;{m^4} - {m^2} + 2m} \right)\\x =  - \sqrt m  \Rightarrow y = {m^4} - {m^2} + 2m \Rightarrow C\left( { - \sqrt m ;{m^4} - {m^2} + 2m} \right)\end{array} \right.\).

Ta có \(d\left( {A;BC} \right) = \left| {{m^4} + 2m - {m^4} + {m^2} - 2m} \right| = {m^2}\) ; \(BC = 2\sqrt m \).

\( \Rightarrow {S_{\Delta ABC}} = \dfrac{1}{2}d\left( {A;BC} \right).BC = \dfrac{1}{2}{m^2}.2\sqrt m  = {m^2}\sqrt m \).

Ta có : \(A{B^2} = m + {m^4} = A{C^2}\).

Gọi R là bán kính đường tròn ngoại tiếp tam giác ABC, khi đó ta có :

\(\begin{array}{l}{S_{\Delta ABC}} = \dfrac{{AB.AC.BC}}{{4R}} \Leftrightarrow {m^2}\sqrt m  = \dfrac{{\left( {m + {m^4}} \right)2\sqrt m }}{4} \Leftrightarrow m + {m^4} = 2{m^2}\\ \Leftrightarrow m\left( {{m^3} - 2m + 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}m = 0\\m = 1\\m = \dfrac{{ - 1 + \sqrt 5 }}{2}\\m = \dfrac{{ - 1 - \sqrt 5 }}{2}\end{array} \right. \Rightarrow S = \left\{ {0;1;\dfrac{{ - 1 + \sqrt 5 }}{2};\dfrac{{ - 1 - \sqrt 5 }}{2}} \right\}\end{array}\)

Khi đó tổng các phần tử của S là  \(0 + 1 + \dfrac{{ - 1 + \sqrt 5 }}{2} + \dfrac{{ - 1 - \sqrt 5 }}{2} = 0\).

Chọn C.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay