Câu hỏi

Parabol \(y = a{x^2} + bx + c\) đi qua A(0; –1), B(1; –1), C(–1; 1) có phương trình là:

  • A \(y = {x^2} - x + 1\)
  • B \(y = {x^2} - x - 1\)
  • C \(y = {x^2} + x - 1\)
  • D \(y = {x^2} + x + 1\)

Phương pháp giải:

Thay tọa độ các điểm A, B, C vào phương trình của parabol, giải hệ phương trình để tìm a, b, c ta lập được phương trình của parabol.

Lời giải chi tiết:

Parabol \(y = a{x^2} + bx + c\) đi qua \(A\left( {0;--1} \right),{\rm{ }}B\left( {1;--1} \right),{\rm{ }}C\left( {--1;{\rm{ }}1} \right)\)

\( \Rightarrow \left\{ \begin{array}{l}c =  - 1\\a + b + c =  - 1\\a - b + c = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b =  - 1\\c =  - 1\end{array} \right. \Rightarrow \left( P \right):\;\;y = {x^2} - x - 1.\)

Chọn B.


Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay