Câu hỏi

Cho khối hộp \(ABCD.A’B’C’D’\) có thể tích bằng \(2018\). Gọi \(M\) là trung điểm của cạnh \(AB\). Mặt phẳng \((MB'D')\) chia khối hộp \(ABCD.A’B’C’D’\) thành hai khối đa diện. Tính thể tích của phần khối đa diện chứa đỉnh \(A\).

  • A \(\dfrac{{5045}}{6}\)         
  • B  \(\dfrac{{7063}}{6}\)        
  • C  \(\dfrac{{10090}}{{17}}\)
  • D \(\dfrac{{7063}}{{12}}\)

Phương pháp giải:

+) Xác định thiết diện của (MB’D’) với hình hộp.

+) Sử dụng cách tính tỉ số diện tích.

Lời giải chi tiết:

 

Xét (MB’D’) và (ABCD) có:

M chung; \(B'D' \subset \left( {MB'D'} \right);\,\,BD \subset \left( {ABCD} \right);\,\,B'D'//BD\)

Do đó giao tuyến của (MB’D’) và (ABCD) là đường thẳng qua M và song song BD.

Trong (ABCD) kẻ MN // BD \(\left( {N \in AD} \right) \Rightarrow \left( {MB'D'} \right) \equiv \left( {MND'B'} \right)\) và mặt phẳng (MB’D’) chia ABCD.A’B’C’D’ thành 2 phần.

Ta có: \(\left\{ \begin{array}{l}\left( {MND'B'} \right) \cap \left( {ABB'A'} \right) = MB'\\\left( {MND'B'} \right) \cap \left( {ADD'A'} \right) = ND'\\\left( {ABB'A'} \right) \cap \left( {ADD'A'} \right) = AA'\end{array} \right. \Rightarrow AA';MB';ND'\) đồng quy tại I.

 

Gọi V và V1 lần lượt là thể tích của khối hộp ABCD.A’B’C’D’ và phần thể tích khối đa diện chứa điểm A. Áp dụng định lí Ta-lét ta có : \(\dfrac{{AM}}{{A'B'}} = \dfrac{{IA}}{{IA'}} = \dfrac{{IM}}{{IB'}} = \dfrac{{IN}}{{ID'}} = \dfrac{1}{2}\). Từ đó ta có :

\(\begin{array}{l}\dfrac{{{V_{I.AMN}}}}{{{V_{I.A'B'D'}}}} = \dfrac{{IA}}{{IA'}}.\dfrac{{IM}}{{IB'}}.\dfrac{{IN}}{{IC'}} = \dfrac{1}{8} \Rightarrow {V_{I.AMN}} = \dfrac{1}{8}{V_{I.A'B'D'}} \Rightarrow {V_1} = \dfrac{7}{8}{V_{I.A'B'D'}}\\\dfrac{{{V_{I.A'B'D'}}}}{V} = \dfrac{1}{3}.\dfrac{{IA'.{S_{A'B'D}}}}{{IA.{S_{ABCD}}}} = \dfrac{1}{3}.2.\dfrac{1}{2} = \dfrac{1}{3} \Rightarrow {V_{I.A'B'D'}} = \dfrac{V}{3} \Rightarrow {V_1} = \dfrac{7}{8}.\dfrac{V}{3} = \dfrac{{7V}}{{24}} = \dfrac{{7063}}{{12}}\end{array}\)

Chọn D.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay