Câu hỏi
Tập hợp tất cả các giá trị thực của tham số m để hàm số \(y = - {x^3} - 6{x^2} + \left( {4m - 9} \right)x + 4\)nghịch biến trên khoảng \(\left( { - \infty - 1} \right)\) là:
- A \(\left( { - \infty ;0} \right]\)
- B \(\left[ { - \dfrac{3}{4}; + \infty } \right)\)
- C \(\left( { - \infty ; - \dfrac{3}{4}} \right]\)
- D \(\left[ {0; + \infty } \right)\)
Phương pháp giải:
Hàm số \(y = f\left( x \right)\) nghịch biến trên D khi và chỉ khi \(f'\left( x \right) \le 0,\forall x \in D\) và bằng 0 tại hữu hạn điểm.
Lời giải chi tiết:
Ta có : \(f'\left( x \right) = - 3{x^2} - 12x + \left( {4m - 9} \right)\)
Hàm số đã cho nghịch biến trên \(\left( { - \infty ; - 1} \right) \Leftrightarrow f'\left( x \right) \le 0\,\,\forall x \in \left( { - \infty ; - 1} \right)\)
\(\begin{array}{l} \Leftrightarrow - 3{x^2} - 12x + \left( {4m - 9} \right) \le 0\;\;\forall x \in \left( { - \infty ; - 1} \right)\\ \Leftrightarrow 4m \le 3{x^2} + 12x + 9 = g\left( x \right)\;\;\forall x \in \left( { - \infty ; - 1} \right)\\ \Rightarrow 4m \le \mathop {\min }\limits_{\left( { - \infty ; - 1} \right)} g\left( x \right)\end{array}\)
Xét hàm số :\(g\left( x \right) = 3{x^2} + 12x + 9\) ta có : \(g'\left( x \right) = 6x + 12 = 0 \Leftrightarrow x = - 2\)
\( \Rightarrow \mathop {\min }\limits_{\left( { - \infty ; - 1} \right)} g\left( x \right) = g\left( { - 2} \right) = - 3\)
\( \Rightarrow 4m \le - 3 \Leftrightarrow m \le - \dfrac{3}{4}\)
CHỌN C.