Câu hỏi
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:
Số nghiệm thực của phương trình \(2f\left( x \right) + 3 = 0\) là:
- A 4
- B 3
- C 2
- D 1
Phương pháp giải:
+) Số nghiệm của phương trình \(f\left( x \right) = m\) là số giao điểm của đồ thị hàm số \(y = f\left( x \right)\) và đường thẳng \(y = m.\)
+) Dựa vào BBT để xác định số giao điểm của các đồ thị hàm số.
Lời giải chi tiết:
Ta có: \(Pt \Leftrightarrow 2f\left( x \right) = - 3 \Leftrightarrow f\left( x \right) = - \dfrac{3}{2}.\;\;\left( * \right)\)
Số nghiệm của phương trình \(\left( * \right)\) là số giao điểm của đồ thị hàm số \(y = f\left( x \right)\) và đường thẳng \(y = - \dfrac{3}{2}.\)
Dựa vào BBT ta thấy đường thẳng \(y = - \dfrac{3}{2}\) cắt đồ thị hàm số \(y = f\left( x \right)\) tại 4 điểm phân biệt.
\( \Rightarrow Pt\;\;\left( * \right)\) có 4 nghiệm phân biệt.
CHỌN A