Câu hỏi
Với \(n \in N;{\rm{ }}n \ge 2\) và thỏa mãn \(\frac{1}{{C_2^2}} + \frac{1}{{C_3^2}} + \frac{1}{{C_4^2}} + ... + \frac{1}{{C_n^2}} = \frac{9}{5}.\) Tính giá trị của biểu thức \(P = \frac{{C_n^5 + C_{n + 2}^3}}{{\left( {n - 4} \right)!}}.\)
- A \(\frac{{61}}{{90}}\)
- B \(\frac{{59}}{{90}}\)
- C \(\frac{{29}}{{45}}\)
- D \(\frac{{57}}{{90}}\)
Phương pháp giải:
Áp dụng công thức: \(C_n^k = \frac{{n!}}{{(n - k)!.k!}}\)
Chú ý : \(\frac{k}{{n(n - k)}} = \frac{1}{{n - k}} - \frac{1}{n}\)
Với \(k = 1\) ta được \(\frac{1}{{n(n - 1)}} = \frac{1}{{n - 1}} - \frac{1}{n}\) áp dụng để rút gọn biểu thức.
Sau khi tìm được n thỏa mãn bài toán thì thay giá trị đó vào biểu thức P để tính giá trị biểu thức.
Lời giải chi tiết:
Điều kiện: \(n \in N,\;\;n \ge 2.\)
\(\begin{array}{l}\;\;\;\;\frac{1}{{C_2^2}} + \frac{1}{{C_3^2}} + \frac{1}{{C_4^2}} + ... + \frac{1}{{C_n^2}} = \frac{9}{5}\\ \Leftrightarrow \frac{1}{{\frac{{2!}}{{\left( {2 - 2} \right)!.2!}}}} + \frac{1}{{\frac{{3!}}{{\left( {3 - 2} \right)!.2!}}}} + \frac{1}{{\frac{{4!}}{{\left( {4 - 2} \right)!.2!}}}} + ...... + \frac{1}{{\frac{{n!}}{{\left( {n - 2} \right)!.2!}}}} = \frac{9}{5}\\ \Leftrightarrow \frac{{0!.2!}}{{2!}} + \frac{{1!.2!}}{{3!}} + .... + \frac{{2!.(n - 2)!}}{{n!}} = \frac{9}{5}\\ \Leftrightarrow 1 + \frac{1}{3} + \frac{1}{6} + ... + \frac{2}{{n(n - 1)}} = \frac{9}{5}\\ \Leftrightarrow \frac{1}{3} + \frac{1}{{2.3}} + ... + \frac{2}{{n(n - 1)}} = \frac{4}{5}\\ \Leftrightarrow \frac{2}{{2.3}} + \frac{2}{{3.4}} + ... + \frac{2}{{n(n - 1)}} = \frac{4}{5}\\ \Leftrightarrow \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + ... + \frac{1}{{n - 1}} - \frac{1}{n} = \frac{2}{5}\\ \Leftrightarrow \frac{1}{2} - \frac{1}{n} = \frac{2}{5}\\ \Leftrightarrow \frac{1}{n} = \frac{1}{{10}} \Leftrightarrow n = 10\;\;\left( {tm} \right)\\ \Rightarrow P = \frac{{C_n^5 + C_{n + 2}^3}}{{\left( {n - 4} \right)!}} = \frac{{C_{10}^5 + C_{12}^3}}{{6!}} = \frac{{59}}{{90}}.\end{array}\)
Chọn B