Câu hỏi
Gọi \(n,\,\,d\) lần lượt là số tiệm cận ngang và số tiệm cận đứng của đồ thị hàm số \(y = \frac{{\sqrt {{x^2} + 1} }}{x}\). Tính giá trị của \(T = 2n + 3d?\)
- A \(T = 7\)
- B \(T = 4\)
- C \(T = 5\)
- D \(T = 8\)
Phương pháp giải:
Cho hàm số \(y = f\left( x \right)\).
+) Nếu \(\mathop {\lim }\limits_{x \to \infty } y = {y_0} \Rightarrow y = {y_0}\) là TCN của đồ thị hàm số.
+) Nếu \(\mathop {\lim }\limits_{x \to {x_0}} y = \infty \Rightarrow x = {x_0}\) là TCĐ của đồ thị hàm số.
Lời giải chi tiết:
Sử dụng MTCT ta tìm được TCN của đồ thị hàm số là \(y = \pm 1\) và TCĐ của đồ thị hàm số là \(x = 0\).
\( \Rightarrow n = 2;d = 1 \Rightarrow T = 2n + 3d = 2.2 + 3.1 = 7\).
Chọn A.