Môn Lý - Lớp 12
50 bài tập Tổng hợp hai dao động điều hòa cùng phương, cùng tần số - Phương pháp giản đồ Frenen mức độ vận dụng cao
Câu hỏi
Một vật có khối lượng không đổi, thực hiện đồng thời hai dao động điều hòa có phương trình dao động lần lượt là \({{x}_{1}}=10\cos \left( 2\pi t+\varphi \right)\,\,cm\) và \({{x}_{2}}={{A}_{2}}\cos \left( 2\pi t-\frac{\pi }{2} \right)\,\,cm\) thì dao động tổng hợp là \(x=A\cos \left( 2\pi t-\frac{\pi }{3} \right)\,\,cm\). Khi năng lượng dao động của vật cực đại thì biên độ dao động A2 có giá trị là
- A \(\frac{{20}}{{\sqrt 3 }}\,\,cm\)
- B \(10\sqrt 3 \,\,cm\)
- C \(\frac{{10}}{{\sqrt 3 }}\,\,cm\)
- D \(20\,\,cm\)
Phương pháp giải:
- Giản đồ Fres-nen
- Định lí hàm số sin trong tam giác
Lời giải chi tiết:
- Từ dữ kiện đề bài \({A_1} = 10cm;{\varphi _{x1}} = \varphi ;{\varphi _{x2}} = - \frac{\pi }{2};{\varphi _x} = - \frac{\pi }{3}\) ta vẽ được giản đồ vecto :
- Xét ∆OA2A ta có: \(\left\{ \begin{array}{l}{A_2}A = {A_1} = 10cm\\\widehat {{A_2}OA} = {90^0} - {60^0} = {30^0}\\\widehat {OA{A_2}} = \widehat {{A_1}OA} = {60^0} + \varphi \,\,\,\left( {O{A_1}//{A_2}A} \right)\\\widehat {O{A_2}A} = {180^0} - \widehat {{A_2}OA} - \widehat {OA{A_2}} = {180^0} - {30^0} - {60^0} - \varphi = {90^0} - \varphi \end{array} \right.\)
- Sử dụng định lí hàm số sin trong ∆OA2A ta có:
\(\begin{array}{l}\frac{{{A_2}A}}{{\sin \widehat {{A_2}OA}}} = \frac{{O{A_2}}}{{\sin \widehat {OA{A_2}}}} = \frac{{OA}}{{\sin \widehat {O{A_2}A}}} \Leftrightarrow \frac{{10}}{{\sin 30}} = \frac{{{A_2}}}{{\sin \left( {60 + \varphi } \right)}} = \frac{A}{{\sin \left( {90 - \varphi } \right)}}\\ \Rightarrow \left\{ \begin{array}{l}A = \frac{{10.\sin \left( {90 - \varphi } \right)}}{{\sin 30}}\\{A_2} = \frac{{10.\sin \left( {60 + \varphi } \right)}}{{\sin 30}}\end{array} \right.\end{array}\)
- Năng lượng dao động cực đại khi \({A_{\max }} \Leftrightarrow \sin \left( {90 - \varphi } \right) = 1 \Leftrightarrow 90 - \varphi = 90 \Rightarrow \varphi = 0 \Rightarrow {A_2} = \frac{{10.\sin \left( {60 + 0} \right)}}{{\sin 30}} = 10\sqrt 3 cm\)