Câu hỏi

Trong tuần lễ cấp cao Apec diễn ra từ ngày 06 đến ngày 11 tháng 11 năm 2017 tại Đà Nẵng, có 21 nên kinh tế thành viên tham dự, trong đó có 12 nền kinh tế sáng lập Apec. Tại một cuộc họp báo, mỗi nền kinh tế thành viên cử một đại diện tham gia. Một phóng viên đã chọn ngẫu nhiên 5 đại diện để phỏng vấn. Tính xác suất để 5 đại diện đó có cả đại diện của nền kinh tế thành viên sáng lập Apec và nền kinh tế thành viên không sáng lập Apec.

  • A \(\frac{{127}}{{133}}\)
  • B \(\frac{{127}}{{143}}\)
  • C \(\frac{{127}}{{131}}\)
  • D \(\frac{{322}}{{133}}\)

Phương pháp giải:

Xác suất của biến cố A: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}}\);             \(P\left( A \right) = 1 - P\left( {\overline A } \right)\).

Lời giải chi tiết:

Số phần tử của không gian mẫu: \(n\left( \Omega  \right) = C_{21}^5\)

A: “5 đại diện đó có cả đại diện của nền kinh tế thành viên sáng lập Apec và nền kinh tế thành viên không sáng lập Apec”

\( \Rightarrow \overline A \): “5 đại diện đó chỉ có đại diện của nền kinh tế thành viên sáng lập Apec hoặc chỉ có nền kinh tế thành viên không sáng lập Apec”

\(\begin{array}{l}n\left( {\overline A } \right) = C_{12}^5 + C_{21 - 12}^5 = C_{12}^5 + C_9^5 = 792 + 126 = 918 \Rightarrow P\left( {\overline A } \right) = \frac{{n\left( {\overline A } \right)}}{{n\left( \Omega  \right)}} = \frac{{C_{12}^5 + C_9^5}}{{C_{21}^5}} = \frac{{918}}{{20349}} = \frac{6}{{133}}\\ \Rightarrow P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{6}{{133}} = \frac{{127}}{{133}}\end{array}\)


Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay