Câu hỏi
Cho hàm số \(y = f(x)\) có đạo hàm \(f'(x) = {x^2}{(x + 1)^2}(2x - 1)\). Khi đó số điểm cực trị của hàm số đã cho là bao nhiêu?
- A 1
- B 2
- C 3
- D 0
Phương pháp giải:
Xác định số điểm mà tại đó đạo hàm \(f'\left( x \right)\) đổi dấu.
Lời giải chi tiết:
\(f'\left( x \right) = {x^2}{\left( {x + 1} \right)^2}\left( {2x - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = - 1\\x = \frac{1}{2}\end{array} \right.\)
Trong đó \(f'\left( x \right)\) chỉ đổi dấu tại điểm \(x = \frac{1}{2} \Rightarrow \) Hàm số đã cho có 1 điểm cực trị.
Chọn: A