Câu hỏi

Cho parabol \(\left( P \right):\,\,y = a{x^2} + bx + c\,\,\left( {a \ne 0} \right)\) có đồ thị như hình bên. Tìm các giá trị của m để phương trình \(\left| {a{x^2} + bx + c} \right| = m\) có 4 nghiệm phân biệt.

 

  • A \( - 1 < m < 3\)                  
  • B  \(0 < m < 3\)
  • C  \(0 \le m \le 3\)                
  • D  \( - 1 \le m \le 3\)

Phương pháp giải:

Số nghiệm của phương trình \(\left| {a{x^2} + bx + c} \right| = m\) là số giao điểm của đồ thị hàm số \(y = \left| {a{x^2} + bx + c} \right|\) và đường thẳng \(y = m\).

Lời giải chi tiết:

Từ đồ thị hàm số \(\left( P \right):\,\,y = a{x^2} + bx + c\,\,\left( {a \ne 0} \right)\) ta suy ra đồ thị hàm số \(y = \left| {a{x^2} + bx + c} \right|\) như sau:

 

 

 

Dựa vào đồ thị hàm số ta thấy để đường thẳng \(y = m\) cắt đồ thị hàm số \(y = \left| {a{x^2} + bx + c} \right|\) tại 4 điểm phân biệt \( \Leftrightarrow 0 < m < 3\).

Chọn B.


Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay