Câu hỏi
Đường thẳng \(y = 1\) cắt đồ thị hàm số \(y = {x^4} - 2{x^2} - 1\) tại bao nhiêu điểm?
- A 4
- B 0
- C 3
- D 2
Phương pháp giải:
Tìm số nghiệm của phương trình hoành độ giao điểm.
Lời giải chi tiết:
Phương trình hoành độ giao điểm của đồ thị hàm số \(y = {x^4} - 2{x^2} - 1\) và đường thẳng \(y = 1\):
\({x^4} - 2{x^2} - 1 = 1 \Leftrightarrow {x^4} - 2{x^2} - 2 = 0 \Leftrightarrow \left[ \begin{array}{l}{x^2} = 1 + \sqrt 3 \\{x^2} = 1 - \sqrt 3 < 0\end{array} \right. \Leftrightarrow {x^2} = 1 + \sqrt 3 \Leftrightarrow x = \pm \sqrt {1 + \sqrt 3 } \)
Vậy, đường thẳng \(y = 1\) cắt đồ thị hàm số \(y = {x^4} - 2{x^2} - 1\) tại 2 điểm.
Chọn: D