Câu hỏi
Tính giá trị nhỏ nhất M của hàm số \(y = - {x^3} + 3{x^2} + 2\) trên đoạn \(\left[ {1;3} \right]\).
- A \(M = 6\).
- B \(M = 2\).
- C \(M = 4\).
- D \(M = - 6\).
Phương pháp giải:
- Tìm TXĐ
- Tìm nghiệm và các điểm không xác định của y’.
- Tính giá trị của hàm số tại các điểm trên, từ đó đánh giá giá trị nhỏ nhất của hàm số trên đoạn \(\left[ {1;3} \right]\).
Lời giải chi tiết:
\(y = - {x^3} + 3{x^2} + 2 \Rightarrow y' = - 3{x^2} + 6x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\,\,(L)\\x = 2\end{array} \right.\)
Ta có: \(y\left( 1 \right) = 4,\,\,y\left( 2 \right) = 6,\,\,y\left( 3 \right) = 2 \Rightarrow \mathop {\min }\limits_{\left[ {1;3} \right]} y = 2\).
Chọn: B