Câu hỏi

 Hệ số \({{x}^{5}}\) trong khai triển biểu thức \(x{{\left( x-2 \right)}^{6}}+{{\left( 3x-1 \right)}^{8}}\) bằng:

  • A 13548                         
  • B  13668                          
  • C – 13668                                 
  • D   – 13548

Phương pháp giải:

Sử dụng công thức khai triển nhị thức Newton để làm bài toán.

Lời giải chi tiết:

Ta có:  \(x{{\left( x-2 \right)}^{6}}+{{\left( 3x-1 \right)}^{8}}=x.\sum\limits_{k=0}^{6}{C_{6}^{k}{{x}^{k}}.{{\left( -2 \right)}^{6-k}}}+\sum\limits_{m=0}^{8}{C_{8}^{m}{{\left( 3x \right)}^{m}}.{{\left( -1 \right)}^{8-m}}.}\)

Để có \({{x}^{5}}\) thì \(\left\{ \begin{align}  & k=4 \\ & m=5 \\\end{align} \right.\Rightarrow \) hệ số của \({{x}^{5}}\) là: \(C_{6}^{4}{{\left( -2 \right)}^{6-4}}+C_{8}^{5}{{.3}^{5}}.{{\left( -1 \right)}^{8-5}}=-13548.\)

Chọn D.


Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay