Câu hỏi

Đồ thị hàm số \(y=\frac{x+1}{\sqrt{{{x}^{2}}-1}}\) có tất cả bao nhiêu tiệm cận đứng và tiệm cận ngang?

  • A 3
  • B 1
  • C 2
  • D 4

Phương pháp giải:

Tính giới hạn để tìm đường tiệm cận đứng, tiệm cận ngang của đồ thị hàm số

Lời giải chi tiết:

Ta có \(\underset{x\,\to \,+\,\infty }{\mathop{\lim }}\,y=\underset{x\,\to \,+\,\infty }{\mathop{\lim }}\,\frac{x+1}{\sqrt{{{x}^{2}}-1}}=\underset{x\,\to \,+\,\infty }{\mathop{\lim }}\,\frac{x\left( 1+\frac{1}{x} \right)}{\left| x \right|\sqrt{1-\frac{1}{{{x}^{2}}}}}=\underset{x\,\to \,+\,\infty }{\mathop{\lim }}\,\frac{1+\frac{1}{x}}{\sqrt{1-\frac{1}{{{x}^{2}}}}}=1\Rightarrow \,\,y=1\) là TCN.

Và \(\underset{x\,\to \,-\,\infty }{\mathop{\lim }}\,y=\underset{x\,\to \,-\,\infty }{\mathop{\lim }}\,\frac{x+1}{\sqrt{{{x}^{2}}-1}}=\underset{x\,\to \,-\,\infty }{\mathop{\lim }}\,\frac{x\left( 1+\frac{1}{x} \right)}{\left| x \right|\sqrt{1-\frac{1}{{{x}^{2}}}}}=\underset{x\,\to \,-\,\infty }{\mathop{\lim }}\,\frac{1+\frac{1}{x}}{-\,\sqrt{1-\frac{1}{{{x}^{2}}}}}=-\,1\Rightarrow \,\,y=-\,1\) là TCN.

Lại có \(\underset{x\,\to \,1}{\mathop{\lim }}\,y=\underset{x\,\to \,1}{\mathop{\lim }}\,\frac{x+1}{\sqrt{{{x}^{2}}-1}}=\infty \)\(\Rightarrow \)\(x=1\) là TCĐ.

Và \(\underset{x\,\to \,-\,1}{\mathop{\lim }}\,y=\underset{x\,\to \,-\,1}{\mathop{\lim }}\,\frac{x+1}{\sqrt{{{x}^{2}}-1}}=0\Rightarrow \,\,x=-\,1\) không là TCĐ.

Vậy đồ thị hàm số đã cho có 3 đường tiệm cận.

Chọn A

 


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay