Môn Toán - Lớp 12
30 bài tập trắc nghiệm giá trị lớn nhất, giá trị nhỏ nhất của hàm số mức độ nhận biết
Câu hỏi
Cho hàm số \(y=f\left( x \right)\) có đạo hàm \({f}'\left( x \right)=-\,{{x}^{2}}-1.\) Với các số thực dương \(a,\,\,b\) thỏa mãn \(a<b.\) Giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ a;b \right]\) bằng
- A \(f\left( b \right).\)
- B \(f\left( \sqrt{ab} \right).\)
- C \(f\left( a \right).\)
- D \(f\left( \frac{a+b}{2} \right).\)
Phương pháp giải:
Hàm số đơn điệu trên đoạn nên giá trị nhỏ nhất – lớn nhất sẽ đạt tại đầu mút của đoạn
Lời giải chi tiết:
Ta có \({f}'\left( x \right)=-\,{{x}^{2}}-1<0;\,\,\forall x\in \left( a;b \right)\) suy ra \(f\left( x \right)\) là hàm số nghịch biến trên \(\left[ a;b \right].\)
Mà \(a<b\)\(\Rightarrow \,\,f\left( a \right)>f\left( b \right).\) Vậy \(\underset{\left[ a;b \right]}{\mathop{\min }}\,f\left( x \right)=f\left( b \right).\)
Chọn A