Câu hỏi

Nối hai cực của một máy phát điện xoay chiều một pha vào hai đầu đoạn mạch AB gồm điện trở thuần \(R = 100\sqrt 2 \Omega \), cuộn cảm thuần L = 5/3π H và tụ điện \(C = {{{{5.10}^{ - 4}}} \over {6\pi }}F\) mắc nối tiếp. Bỏ qua điện trở các cuộn dây của máy phát điện và điện trở dây nối. Máy phát điện có số cặp cực không đổi, tốc độ quay của roto thay đổi được. Khi tốc độ quay của roto bằng n (vòng/phút) thì công suất của mạch đạt giá trị lớn nhất bằng 161,5W. Khi tốc độ quay của roto bằng 2n (vòng/phút) thì công suất tiêu thụ của mạch là:

  • A 136W
  • B 126W
  • C 148W
  • D 125W

Phương pháp giải:

Công thức tính công suất tiêu thụ của mạch: \(P = {{{U^2}R} \over {{Z^2}}} = {{{{\left( {{{\omega {\Phi _0}} \over {\sqrt 2 }}} \right)}^2}.R} \over {{R^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}}} = {{{\omega ^2}{\Phi ^2}.R} \over {{R^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}}}\)

Lời giải chi tiết:

+ Khi tốc độ quay của roto là n (vòng/phút):

\(\eqalign{
& P = {{{\omega ^2}{\Phi ^2}.R} \over {{R^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}}} = {{{\omega ^2}{\Phi ^2}.R} \over {{R^2} + {{\left( {\omega L - {1 \over {\omega C}}} \right)}^2}}} = {{{\omega ^2}{\Phi ^2}.R} \over {{R^2} + {\omega ^2}{L^2} - {{2L} \over C} + {1 \over {{\omega ^2}{C^2}}}}} = {{{\Phi ^2}.R} \over {{{{R^2}} \over {{\omega ^2}}} + {L^2} - {{2L} \over {{\omega ^2}C}} + {1 \over {{\omega ^4}{C^2}}}}} \cr
& \Rightarrow P = {{{\Phi ^2}.R} \over {{1 \over {{\omega ^4}{C^2}}} + \left( {{R^2} - {{2L} \over C}} \right){1 \over {{\omega ^2}}} + {L^2}}} \cr} \)

\(\eqalign{
& {P_{\max }} \Leftrightarrow {\left[ {{1 \over {{\omega ^4}{C^2}}} + \left( {{R^2} - {{2L} \over C}} \right){1 \over {{\omega ^2}}} + {L^2}} \right]_{\min }} \Leftrightarrow {1 \over {{\omega ^2}}} = {{{{2L} \over C} - {R^2}} \over {{2 \over {{C^2}}}}} = {{2{5 \over {3\pi }}.{{6\pi } \over {{{5.10}^{ - 4}}}} - {{\left( {100\sqrt 2 } \right)}^2}} \over {{2 \over {{{\left( {{{6\pi } \over {{{5.10}^{ - 4}}}}} \right)}^2}}}}} = {1 \over {14400{\pi ^2}}} \Rightarrow \omega = 120\pi \cr
& \Rightarrow \left\{ \matrix{
{Z_L} = \omega L = 120\pi .{5 \over {3\pi }} = 200\Omega \hfill \cr
{Z_C} = {1 \over {\omega C}} = {1 \over {120\pi .{{{{5.10}^{ - 4}}} \over {6\pi }}}} = 100\Omega \hfill \cr} \right. \Rightarrow {P_{m{\rm{ax}}}} = {{{\omega ^2}{\Phi ^2}R} \over {{R^2} + {{\left( {200 - 100} \right)}^2}}} = 161,5(*) \cr} \)

+ Khi tốc độ quay của roto là 2n (vòng/phút)

\( \Rightarrow \left\{ \matrix{
{Z_L}' = 2{Z_L} = 400\Omega \hfill \cr
{Z_C}' = {{{Z_C}} \over 2} = 50\Omega \hfill \cr} \right. \Rightarrow P' = {{\omega {'^2}{\Phi ^2}R} \over {{R^2} + {{\left( {{Z_L}' - {Z_C}'} \right)}^2}}} = {{4{\omega ^2}R} \over {{R^2} + {{\left( {400 - 50} \right)}^2}}}(**)\)

 Từ (*) và (**) \( \Rightarrow {{P'} \over {{P_{m{\rm{ax}}}}}} = {{\omega {'^2}} \over {{\omega ^2}}}.{{{R^2} + {{\left( {200 - 100} \right)}^2}} \over {{R^2} + {{\left( {400 - 50} \right)}^2}}} \Leftrightarrow {{P'} \over {161,5}} = 4.{{{{\left( {100\sqrt 2 } \right)}^2} + {{100}^2}} \over {{{\left( {100\sqrt 2 } \right)}^2} + {{350}^2}}} = {{16} \over {19}} \Rightarrow P' = 136W\)


Luyện Bài Tập Trắc nghiệm Lí lớp 12 - Xem ngay