TUYENSINH247 ĐỒNG GIÁ 299K TOÀN BỘ KHOÁ HỌC TỪ LỚP 1-LỚP 12

TẶNG KHOÁ ĐỀ THI HK2 TỚI 599K

  • Bắt đầu sau
  • 16

    Giờ

  • 0

    Phút

  • 2

    Giây

Xem chi tiết

Câu hỏi

Tính lim

  • A

     +\,\infty .   

  • B

     -\,\infty .    

  • C

     \frac{2}{3}.

  • D  1.

Phương pháp giải:

Dựa vào phương pháp tính giới hạn (nhân liên hợp) của dạng vô định \infty \,\,-\,\,\infty

Lời giải chi tiết:

Ta có \sqrt{4{{n}^{2}}+3}-\sqrt[3]{8{{n}^{3}}+n}=\sqrt{4{{n}^{2}}+3}-2n+2n-\sqrt[3]{8{{n}^{3}}+n}.

=\frac{3}{\sqrt{4{{n}^{2}}+3}+2n}\frac{n}{4{{n}^{2}}+2n\sqrt[3]{8{{n}^{3}}n}+\sqrt[3]{{{\left( 8{{n}^{3}}+n \right)}^{2}}}}.

Khi đó \lim \,n\left( \sqrt{4{{n}^{2}}+3}-\sqrt[3]{8{{n}^{3}}+n} \right)=\lim \frac{3n}{\sqrt{4{{n}^{2}}+3}+2n}-\lim \frac{{{n}^{2}}}{4{{n}^{2}}+2n\sqrt[3]{8{{n}^{3}}+n}+\sqrt[3]{{{\left( 8{{n}^{3}}+n \right)}^{2}}}}

=\lim \frac{3}{\sqrt{4+\frac{3}{{{n}^{2}}}}+2}-\lim \frac{1}{4+2\sqrt[3]{8+\frac{1}{{{n}^{2}}}}+\sqrt[3]{{{\left( 8+\frac{1}{{{n}^{2}}} \right)}^{2}}}}=\frac{3}{2+2}-\frac{1}{4+2.2+{{2}^{2}}}=\frac{2}{3}.

Chọn C.


Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay