Câu hỏi

Tính nguyên hàm \(I=\int{\left( {{2}^{x}}+{{3}^{x}} \right)\,\text{d}x}.\)

  • A \(I=\frac{\ln 2}{2}+\frac{\ln 3}{3}+C.\)              
  • B  \(I=\frac{\ln 2}{{{2}^{x}}}+\frac{\ln 3}{{{3}^{x}}}+C.\)         
  • C \(I=\frac{{{2}^{x}}}{\ln 2}+\frac{{{3}^{x}}}{\ln 3}+C.\)                    
  • D  \(I=-\,\frac{\ln 2}{2}-\frac{\ln 3}{3}+C.\)

Phương pháp giải:

Dựa vào công thức nguyên hàm của hàm số mũ cơ bản \(\int\limits_{{}}^{{}}{{{a}^{x}}dx}=\frac{{{a}^{x}}}{\ln a}+C\)

Lời giải chi tiết:

Ta có \(I=\int{\left( {{2}^{x}}+{{3}^{x}} \right)\,\text{d}x}=\int{{{2}^{x}}\,\text{d}x}+\int{{{3}^{x}}\,\text{d}x}=\frac{{{2}^{x}}}{\ln 2}+\frac{{{3}^{x}}}{\ln 3}+C.\) 

Chọn C.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay