Môn Toán - Lớp 12
40 bài tập trắc nghiệm đường tiệm cận của đồ thị hàm số mức độ nhận biết, thông hiểu
Câu hỏi
Tìm số tiệm cận của đồ thị hàm số \(y=\frac{{{x}^{2}}-7x+6}{{{x}^{2}}-1}.\)
- A 2
- B 3
- C 1
- D 0
Phương pháp giải:
+) Rút gọn biểu thức, tính giới hạn để tìm tiệm cận của đồ thị hàm số.
+) Đường thẳng \(x=a\) được gọi là tiệm cận đứng của đồ thị hàm số nếu \(x=a\) là nghiệm của mẫu và không là nghiệm của tử số.
+) Đường thẳng \(y=b\) được gọi là tiệm cận ngang của đồ thị hàm số \(y=f\left( x \right)\) nếu \(\underset{x\to \pm \infty }{\mathop{\lim }}\,f\left( x \right)=b.\)
Lời giải chi tiết:
Ta có \(y=\frac{{{x}^{2}}-7x+6}{{{x}^{2}}-1}=\frac{\left( x-1 \right)\left( x-6 \right)}{\left( x-1 \right)\left( x+1 \right)}=\frac{x-6}{x+1}.\)
Khi đó đồ thị hàm số có tiệm cận đứng là \(x=-1\) và tiệm cận ngang là \(y=1.\)
Suy ra đồ thị hàm số đã cho có 2 đường tiệm cận.
Chọn A