Câu hỏi

Phương trình đường tròn (C) có tâm \(I(5;-2)\) và tiếp xúc với đường thẳng Oy là:

  • A \({{x}^{2}}+{{y}^{2}}-10x+4y+4=0\)                                                
  • B \({{x}^{2}}+{{y}^{2}}-10x+4y+25=0\)  
  • C \({{x}^{2}}+{{y}^{2}}+10x-4y+4=0\)                                                
  • D \({{x}^{2}}+{{y}^{2}}+10x-4y+25=0\)  

Phương pháp giải:

\(\left( C \right)\) tiếp xúc \(\text{Oy}\Rightarrow R=d\left( I,\text{Oy} \right)\)

Lời giải chi tiết:

\(\left( C \right)\) tiếp xúc \(\text{Oy}\Rightarrow R=d\left( I,\text{Oy} \right)\). Mặt khác \(I\left( 5;-2 \right)\Rightarrow R=\left| 5 \right|=5\)

\(\left( C \right)\) tâm \(I(5;-2),\,R=5\Rightarrow \left( C \right):{{\left( x-5 \right)}^{2}}+{{\left( y+2 \right)}^{2}}={{5}^{2}}\)

\(\begin{array}{l} \Leftrightarrow {x^2} - 10x + 25 + {y^2} + 4y + 4 = 25\\ \Leftrightarrow {x^2} + {y^2} - 10x + 4y + 4 = 0\end{array}\)

Chọn A.


Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay