Câu hỏi

Cho hàm số \(y=\frac{mx+2}{2x+m}\), mlà tham số thực. Gọi \(S\) là tập hợp tất cả các giá trị nguyên của mđể hàm số nghịch biến trên khoảng \(\left( 0;\,1 \right)\)  Tìm số phần tử của \(S\)

  • A 1
  • B

    5

  • C 2
  • D 3

Phương pháp giải:

Hàm số \(y=\frac{ax+b}{cx+d}\) nghịch biến trên khoảng K khi \(\left\{ \begin{array}{l}y' < 0,\,\forall x \in K\\\frac{{ - d}}{c} \notin K\end{array} \right.\).

Lời giải chi tiết:

Ta có \({y}'=\frac{{{m}^{2}}-4}{{{\left( 2x+m \right)}^{2}}}\), \(x\ne -\frac{m}{2}\)

Để hàm số nghịch biến trên \(\left( 0;\,1 \right)\) \( \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 4 < 0\\ - \frac{m}{2} \notin \left( {0;\,1} \right)\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l} - 2 < m < 2\\m \in \left( { - \infty ;\, - 2} \right] \cup \left[ {0;\, + \infty } \right)\end{array} \right.\)\(\Leftrightarrow 0\le m<2\)

Với \(m\in \mathbb{Z}\) nên ta có \(m=\left\{ 0;\,1 \right\}\)  Có 2 giá trị nguyên của mthỏa mãn yêu cầu bài toán.

Chọn C.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay