Câu hỏi

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}3 - \sqrt {4 - x} \,\,\,khi\,\,x \ne 0\\1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 0\end{array} \right.\) . Khi đó \(f'\left( 0 \right)\) là kết quả nào sau đây?

  • A  \(\frac{1}{4}\)                                              
  • B  \(\frac{1}{16}\)                                            
  • C  \(\frac{1}{2}\)                                              

     

  • D 2

Phương pháp giải:

Đạo hàm của hàm số \(y=f\left( x \right)\) tại điểm \(x={{x}_{0}}\) là \(f'\left( {{x}_{0}} \right)=\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{f\left( x \right)-f\left( {{x}_{0}} \right)}{x-{{x}_{0}}}\) (nếu tồn tại).

Lời giải chi tiết:

\(f'\left( 0 \right)=\underset{x\to 0}{\mathop{\lim }}\,\frac{f\left( x \right)-f\left( 0 \right)}{x-0}=\underset{x\to 0}{\mathop{\lim }}\,\frac{3-\sqrt{4-x}-1}{x}=\underset{x\to 0}{\mathop{\lim }}\,\frac{2-\sqrt{4-x}}{x}=\underset{x\to 0}{\mathop{\lim }}\,\frac{4-4+x}{x\left( 2+\sqrt{4-x} \right)}=\underset{x\to 0}{\mathop{\lim }}\,\frac{1}{2+\sqrt{4-x}}=\frac{1}{4}\)

Chọn A.


Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay