Câu hỏi
Cho hàm số \(f\left( x \right) = \left\{ \matrix{ x\sin {2 \over x}\,\,\,\,\,\,\,\,\,\,\,khi\,\,x > 0 \hfill \cr a\cos x - 5\,\,\,\,khi\,\,x \le 0 \hfill \cr} \right.\). Tìm tất cả các giá trị thực của tham số a để hàm số liên tục trên R.
- A a = 5
- B a = 7
- C \(a = {{11} \over 2}\)
- D Không có giá trị nào của a thỏa mãn.
Phương pháp giải:
Xét tính liên tục của hàm số tại x = 0. Để hàm số liên tục tại điểm x = 0 thì \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = f\left( 0 \right)\)
Lời giải chi tiết:
Hàm số đã cho liên tục trên các khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {0; + \infty } \right)\). Để hàm số liên tục trên R ta cần chứng minh hàm số liên tục tại x = 0.
\(\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \left( {a\cos x - 5} \right) = a - 5 = f\left( 0 \right)\)
Ta có \(0 \le \left| {x\sin {2 \over x}} \right| \le \left| x \right|,\,\,\mathop {\lim }\limits_{x \to {0^ + }} \left| x \right| = 0 \Rightarrow \mathop {\lim }\limits_{x \to {0^ + }} \left( {x\sin {2 \over x}} \right) = 0\)
Để hàm số liên tục tại điểm x = 0 thì \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = f\left( 0 \right) \Leftrightarrow a - 5 = 0 \Leftrightarrow a = 5\)
Chọn A.