Câu hỏi

Cho phương trình \(2{x^4} - 5{x^2} + x + 1 = 0\,\,\,\left( 1 \right)\). Trong các mệnh đề sau, mệnh đề nào đúng?

  • A Phương trình (1) chỉ có một nghiệm trong \(\left( { - 2;1} \right)\)
  • B Phương trình (1) có ít nhất hai nghiệm trong khoảng \(\left( {0;2} \right)\)
  • C Phương trình (1) không có nghiệm trong khoảng \(\left( { - 2;0} \right)\)
  • D Phương trình (1) không có nghiệm trong khoảng \(\left( { - 1;1} \right)\).

Phương pháp giải:

Hàm số \(y = f\left( x \right)\) liên tục trên \(\left( {a;b} \right)\) và \(f\left( a \right).f\left( b \right) < 0\) thì tồn tại ít nhất một số \({x_0} \in \left( {a;b} \right)\) sao cho x0 là nghiệm của phương trình \(f\left( x \right) = 0\).

Lời giải chi tiết:

TXĐ: D = R. Hàm số \(f\left( x \right) = 2{x^4} - 5{x^2} + x + 1\) liên tục trên R.

Ta có: \(f\left( { - 1} \right) =  - 3,\,\,f\left( 0 \right) = 1 \Rightarrow f\left( { - 1} \right)f\left( 0 \right) < 0 \Rightarrow \) Phương trình (1) có ít nhất một nghiệm trong \(\left( { - 1;0} \right) \subset \left( { - 2;1} \right)\)

Ta có \(f\left( 0 \right) = 1;f\left( 1 \right) =  - 1 \Rightarrow f\left( 0 \right).f\left( 1 \right) < 0 \Rightarrow \) Phương trình (1) có ít nhất 1 nghiệm thuộc \(\left( {0;1} \right) \subset \left( { - 2;1} \right)\).

\( \Rightarrow \)  Phương trình (1) có ít nhất hai nghiệm trong \(\left( { - 2;1} \right) \Rightarrow \) Đáp án A sai.

Ta có: \(f\left( { - 1} \right) =  - 3,\,\,f\left( 0 \right) = 1 \Rightarrow f\left( { - 1} \right)f\left( 0 \right) < 0 \Rightarrow \) Phương trình (1) có ít nhất một nghiệm trong \(\left( { - 1;0} \right) \subset \left( { - 2;0} \right) \Rightarrow \) Đáp án C sai.

 Ta có \(f\left( 0 \right) = 1;f\left( 1 \right) =  - 1 \Rightarrow f\left( 0 \right).f\left( 1 \right) < 0 \Rightarrow \) Phương trình (1) có ít nhất 1 nghiệm thuộc \(\left( {0;1} \right) \subset \left( { - 1;1} \right) \Rightarrow \) Đáp án D sai.

Chọn B.


Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay