Câu hỏi
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có cạnh AB = a, BC = 2a. Cạnh bên SA vuông góc với mặt phẳng đáy (ABCD), cạnh \(SA = a\sqrt {15} \). Tính góc tạo bởi đường thẳng SC và mặt phẳng (ABD).
- A \({30^0}.\)
- B \({45^0}.\)
- C \({60^0}.\)
- D \({90^0}.\)
Phương pháp giải:
Áp dụng phương pháp tìm góc giữa đường thẳng và mặt phẳng – hệ thức lượng trong tam giác vuông để giải quyết yêu cầu của bài toán
Lời giải chi tiết:
Do \(SA \bot \left( {ABCD} \right)\) nên
\(\widehat {\left( {SC;\left( {ABD} \right)} \right)} = \widehat {\left( {SC;\left( {ABCD} \right)} \right)} = \widehat {\left( {SC;AC} \right)} = \widehat {SCA}\).
Xét tam giác vuông SAC, ta có:
\(\tan \widehat {SCA} = \frac{{SA}}{{AC}} = \frac{{SA}}{{\sqrt {A{B^2} + B{C^2}} }} = \frac{{a\sqrt {15} }}{{\sqrt {{a^2} + (2a)^2} }} = \sqrt 3 \).
Suy ra \(\widehat {SCA} = {60^0}\).
Chọn C.