Câu hỏi

 Đồ thị hàm só nào sau đây có 3 đường tiệm cận?

  • A \(y = \dfrac{{1 - 2x}}{{1 + x}}.\)
  • B  \(y = \dfrac{1}{{4 - {x^2}}}.\)
  • C  \(y = \dfrac{x}{{{x^2} - x + 9}}.\) 
  • D  \(y = \dfrac{{x + 3}}{{5x - 1}}.\)

Phương pháp giải:

* Định nghĩa tiệm cận ngang của đồ thị hàm số \(y = f(x)\).

Nếu \(\mathop {\lim }\limits_{x \to  + \infty } f(x) = a\,\) hoặc\(\,\mathop {\lim }\limits_{x \to  - \infty } f(x) = a \Rightarrow y = a\) là TCN của đồ thị hàm số.

* Định nghĩa tiệm cận đứng của đồ thị hàm số \(y = f(x)\).

Nếu \(\mathop {\lim }\limits_{x \to {a^ + }} f(x) =  + \infty \,\) hoặc \(\mathop {\lim }\limits_{x \to {a^ + }} f(x) =  - \infty \,\) hoặc \(\mathop {\lim }\limits_{x \to {a^ - }} f(x) =  + \infty \,\) hoặc \(\mathop {\lim }\limits_{x \to {a^ - }} f(x) =  - \infty \,\) thì \(x = a\)

 là TCĐ của đồ thị hàm số.

Lời giải chi tiết:

Đồ thị hàm số \(y = \dfrac{{1 - 2x}}{{1 + x}}\) có 2 đường tiệm cận là \(x =  - 1;\,\,y =  - 2\)

Đồ thị hàm số \(y = \dfrac{1}{{4 - {x^2}}}\) có 3 đường tiệm cận là \(x = 2;\,\,x =  - 2;\,\,y = 0\)

Đồ thị hàm số\(y = \dfrac{x}{{{x^2} - x + 9}}\) có 1 đường tiệm cận là \(y = 0\)

Đồ thị hàm số\(y = \dfrac{{x + 3}}{{5x - 1}}\) có 2 đường tiệm cận là \(x = \dfrac{1}{5};\,\,y = \dfrac{1}{5}\)

Chọn: B.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay