Câu hỏi

Tìm \(\mathop {\lim }\limits_{x \to  + \infty } \dfrac{{2x + 1}}{{x - 1}}.\)

  • A 2
  • B 3
  • C -1
  • D 1

Phương pháp giải:

Chia cả tử và mẫu cho \(x\) và dùng tính chất của giới hạn để tính giới hạn.

Lời giải chi tiết:

Ta có \(\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{2x + 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{2 + \dfrac{1}{x}}}{{1 - \dfrac{1}{x}}} = \dfrac{{\mathop {\lim }\limits_{x \to  + \infty } \left( {2 + \dfrac{1}{x}} \right)}}{{\mathop {\lim }\limits_{x \to  + \infty } \left( {1 - \dfrac{1}{x}} \right)}} = 2.\)

Chọn A.


Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay