Câu hỏi

 Cho hàm số \(y=f(x)\) có đạo hàm trên \(\mathbb{R}\) và \(f'(x)>0,\,\,\forall x\in \left( 0;\,+\infty  \right)\). Biết \(f(1)=2\). Khẳng định nào dưới đây có thể xảy ra?

  • A  \(f(2)=1.\)                              
  • B  \(f(2017)>f(2018).\)  
  • C  \(f(-1)=2.\)                             
  • D  \(f(2)+f(3)=4.\)

Phương pháp giải:

Dựa vào tính đơn điệu của hàm số để loại trừ đáp án sai dựa vào tính đơn điệu của hàm số.

Lời giải chi tiết:

Vì \(f'(x)>0,\,\,\forall x\in \left( 0;\,+\infty  \right)\) nên hàm số \(y=f(x)\)đồng biến trên khoảng \(\left( 0;\,+\infty  \right)\)

\(\Rightarrow \) Loại bỏ các đáp án:

+) Đáp án A (do \(f(2)>f(1)=2\)),

+) Đáp án B (do \(2017<2018\Rightarrow f(2017)<f(2018)\),

+) Đáp án D (do \(f(3)>f(2)>f(1)=2\Rightarrow f(2)+f(3)>2+2\Leftrightarrow f(2)+f(3)>4\)).

Như vậy, chỉ có khẳng định ở đáp án C là có thể xảy rA.

Chọn C.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay