Câu hỏi

 Tập hợp tất cả các giá trị của m để hàm số \(y=\frac{1}{3}{{x}^{3}}-\left( m-1 \right){{x}^{2}}+2\left( m-1 \right)x-2\) luôn tăng trên \(R\)

  • A \(m>1\)
  • B \(\left[ \begin{array}{l}m < 1\\m > 3\end{array} \right.\)
  • C \(2\le m\le 3\)
  • D \(1\le m\le 3\)

Phương pháp giải:

Tính \(y'\) và tìm điều kiện của \(m\) để \(y'>0,\forall x\in R\).

Điều kiện để tam thức bậc hai \(a{{x}^{2}}+bx+c>0,\forall x\in R\) là \(\left\{ \begin{array}{l}a > 0\\\Delta  \le 0\end{array} \right.\) 

Lời giải chi tiết:

Xét hàm số: \(y=\frac{1}{3}{{x}^{3}}-\left( m-1 \right){{x}^{2}}+2\left( m-1 \right)x-2\) trên \(R\)

Có \(y'\left( x \right)={{x}^{2}}-2\left( m-2 \right)x+2\left( m-1 \right).\)

Hàm số đã cho tăng trên \(R\Leftrightarrow y'\left( x \right)>0,\forall x\in R\)

\(\Leftrightarrow \Delta '={{\left( m-1 \right)}^{2}}-2\left( m-1 \right)\le 0\)  vì \(a=1>0.\)

\(\Leftrightarrow {{m}^{2}}-4m+3\le 0\)

\(\Leftrightarrow 1\le m\le 3.\)

Đáp án D.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay