Câu hỏi

Tìm giá trị của \({x_0} + {y_0}\) . Biết \(M({x_0};{y_0})\) là điểm cố định mà đường thẳng \(d:y = (m + 2)x + m - 3\) luôn đi qua.

  • A \( - 6\)                                      
  • B  \(6\)                                           
  • C        \(4\)                                                 
  • D \( - 5\)

Phương pháp giải:

-          \(M\left( {{x_0};{y_0}} \right)\) là điểm cố định mà d luôn đi qua\( \Leftrightarrow M\left( {{x_0};{y_0}} \right) \in d,\forall m \Leftrightarrow m.A + B = 0,\forall m \Leftrightarrow \left\{ \begin{array}{l}- A = 0\\-B = 0-\end{array} \right.\)

-          Giải hệ phương trình tìm nghiệm.

Lời giải chi tiết:

Gọi \(M\left( {{x_0};{y_0}} \right)\) là điểm cố định mà d luôn đi qua.

\(\begin{array}{l} \Leftrightarrow M\left( {{x_0};{y_0}} \right) \in d\begin{array}{*{20}{c}}{}&{}\end{array}\forall m\\ \Leftrightarrow (m + 2){x_0} + m - 3 = {y_0}\begin{array}{*{20}{c}}{}&{}\end{array}\forall m\\ \Leftrightarrow m{x_0} + 2{x_0} + m - {y_0} - 3 = 0\begin{array}{*{20}{c}}{}&{}\end{array}\forall m\\ \Leftrightarrow m({x_0} + 1) + 2{x_0} - {y_0} - 3 = 0,\forall m\\ \Leftrightarrow \left\{ \begin{array}{l}{x_0} + 1 = 0\\2{x_0} - {y_0} - 3 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_0} =  - 1\\2.( - 1) - {y_0} = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_0} =  - 1\\{y_0} =  - 5\end{array} \right. \Rightarrow M( - 1; - 5)\\ \Rightarrow {x_0} + {y_0} =  - 1 + ( - 5) =  - 6.\end{array}\)

Chọn A. 


Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay