Câu hỏi
Tìm tập hợp các điểm biểu diễn số phức\(z\), biết rằng số phức \({{z}^{2}}\) có điểm biểu diễn nằm trên trục hoành.
- A Trục tung
- B Trục hoành
- C Đường phân giác góc phần tư (I) và góc phần tư (III).
- D Trục tung và trục hoành.
Phương pháp giải:
Phương pháp tìm tập hợp điểm biểu diễn số phức
Bước 1: Gọi số phức \(z=x+yi\)có điểm biểu diễn là \(M(x;y)\)
Bước 2: Thay zvào đề bài \(\Rightarrow \)Sinh ra một phương trình:
+) Đường thẳng: \(Ax+By+C=0.\)
+) Đường tròn: \({{x}^{2}}+{{y}^{2}}-2ax-2by+c=0.\)
+) Parabol: \(y=a.{{x}^{2}}+bx+c\)
+) Elip: \(\frac{{{x}^{2}}}{a}+\frac{{{y}^{2}}}{b}=1\)
Lời giải chi tiết:
Giả sử \(z=a+bi\) , ta có \({{z}^{2}}={{(a+bi)}^{2}}={{a}^{2}}-{{b}^{2}}+2abi\).
Số phức \({{z}^{2}}\) có điểm biểu diễn nằm trên trục hoành khi \(2ab = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{a = 0}\\{b = 0}\end{array}} \right..\)
Chọn đáp án D.