Câu hỏi
Số phức thỏa mãn: \((3+4i)z+(1-3i)=2+5i\) là:
- A \(z=-\frac{7}{5}+\frac{4}{5}i\)
- B \(z=\frac{7}{5}+\frac{4}{5}i\)
- C \(z=-\frac{7}{5}-\frac{4}{5}i\)
- D \(z=\frac{7}{5}-\frac{4}{5}i\)
Phương pháp giải:
Gọi số phức \(z=a+bi\left( a,b\in R \right)\), thay vào điều kiện đề bài tìm \(a,b\Rightarrow z\).
Lưu ý: phương pháp đồng nhất hệ số \(a+bi=a'+b'i\Leftrightarrow a=a';b=b'\).
Lời giải chi tiết:
Giả sử \(z=a+bi\left( a,b\in R \right)\), ta có:
\(\begin{array}{l}(3 + 4i)z + (1 - 3i) = 2 + 5i\\ \Leftrightarrow (3 + 4i)z = 1 + 8i\\ \Leftrightarrow (3 + 4i)(a + bi) = 1 + 8i\\ \Leftrightarrow 3a + 3bi + 4ai - 4b = 1 + 8i\\ \Leftrightarrow \left\{ \begin{array}{l}3a - 4b = 1\\4a + 3b = 8\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = \frac{7}{5}\\b = \frac{4}{5}\end{array} \right.\\ \Rightarrow z = \frac{7}{5} + \frac{4}{5}i\end{array}\)
Chọn B