Câu hỏi

Đạo hàm bậc \(21\)  của hàm số \(f\left( x \right) = \cos \left( {x + a} \right)\) là

  • A \({f^{\left( {21} \right)}}\left( x \right) = \sin \left( {x + a + \dfrac{\pi }{2}} \right)\) 
  • B \({f^{\left( {21} \right)}}\left( x \right) =  - \sin \left( {x + a + \dfrac{\pi }{2}} \right)\)
  • C \({f^{\left( {21} \right)}}\left( x \right) =  - \cos \left( {x + a + \dfrac{\pi }{2}} \right)\)
  • D \({f^{\left( {21} \right)}}\left( x \right) = \cos \left( {x + a + \dfrac{\pi }{2}} \right)\)

Phương pháp giải:

Phương pháp: Chứng minh \({f^{\left( 4 \right)}}\left( x \right) = f\left( x \right)\)

Lời giải chi tiết:

Cách giải

\(\begin{array}{l}f'\left( x \right) = - \sin \left( {x + a} \right)\\f''\left( x \right) = - \cos \left( {x + a} \right)\\{f^{\left( 3 \right)}}\left( x \right) = \sin \left( {x + a} \right)\\{f^{\left( 4 \right)}}\left( x \right) = \cos \left( {x + a} \right) = f\left( x \right)\\ \Rightarrow f\left( x \right) = {f^{\left( 4 \right)}}\left( x \right) = {f^{\left( 8 \right)}}\left( x \right) = ... = {f^{\left( {4n} \right)}}\left( x \right){\rm{ }}\left( {n \in *} \right)\\ \Rightarrow {f^{\left( {20} \right)}}\left( x \right) = f\left( x \right) = \cos \left( {x + a} \right)\\ \Rightarrow {f^{\left( {21} \right)}}\left( x \right) = - \sin \left( {x + a} \right) = \cos \left( {x + a + \dfrac{\pi }{2}} \right)\end{array}\)

Chọn đáp án D


Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay