Câu hỏi
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O có đường chéo \(AC = BD = 2a\), \(SO \bot \left( {ABCD} \right),SO = OB\). Khoảng cách từ điểm S đến mặt phẳng (ABCD) bằng
- A 2a
- B \(\sqrt 3 a\)
- C a
- D \(\sqrt 2 a\)
Phương pháp giải:
Tính SO.
Lời giải chi tiết:
\(SO \bot \left( {ABCD} \right),SO = OB\) nên \(SO = d\left( {S,\left( {ABCD} \right)} \right)\) và \(SO = OB = \dfrac{{BD}}{2} = a\)