Câu hỏi
\((2\) điểm) Cho \(\tan x = - \dfrac{3}{4}\left( {\dfrac{\pi }{2} < x < \pi } \right)\). Tính \(\cos x,\cos 2x,\tan \left( {x - \dfrac{\pi }{4}} \right),\)\(\sin \left( {\dfrac{\pi }{3} + x} \right)\).
Phương pháp giải:
\(\dfrac{1}{{{{\cos }^2}x}} = {\tan ^2}x + 1\)
\(\dfrac{\pi }{2} < x < \pi \) thì \(\cos x < 0,\sin x > 0\)
\(\cos 2x = 2{\cos ^2}x - 1\)
\(\tan \left( {a - b} \right) = \dfrac{{\tan a - \tan b}}{{1 + \tan a.\tan b}}\)
\(\sin \left( {a + b} \right)\)\( = \sin a.\cos b + \cos a.\sin b\)
Lời giải chi tiết:
Ta có \(\dfrac{1}{{{{\cos }^2}x}} = {\tan ^2}x + 1 = \dfrac{{25}}{{16}}\)
\( = > {\cos ^2}x = \dfrac{{16}}{{25}},{\sin ^2}x = \dfrac{9}{{25}}\)
Do \(\dfrac{\pi }{2} < x < \pi \) nên \(\cos x < 0,\sin x > 0\)
=> \(\cos x = \dfrac{{ - 4}}{5},\sin x = \dfrac{3}{5}\)
\(\begin{array}{l}\cos 2x = 2{\cos ^2}x - 1 = \dfrac{7}{{25}}\\\tan \left( {x - \dfrac{\pi }{4}} \right) = \dfrac{{\tan x - \tan \dfrac{\pi }{4}}}{{1 + \tan x.\tan \dfrac{\pi }{4}}}\\ = - 7\\\sin \left( {\dfrac{\pi }{3} + x} \right)\\ = \sin \dfrac{\pi }{3}.\cos x + \cos \dfrac{\pi }{3}.\sin x\\ = \dfrac{{\sqrt 3 }}{2}.\left( { - \dfrac{4}{5}} \right) + \dfrac{1}{2}.\dfrac{3}{5} = \dfrac{{3 - 4\sqrt 3 }}{{10}}\end{array}\)