Câu hỏi

Trong các hàm số sau, hàm số nào nghịch biến trên tập số thực?

  • A \(y =  - {x^3} + 2{x^2} - 10x + 4\)
  • B \(y = \dfrac{{x + 10}}{{x - 1}}\)
  • C \(y = {x^2} - 5x + 6\)
  • D \(y = x + 5\)

Phương pháp giải:

Tính \(y'\) và kiểm tra xem hàm số nào có \(y' \le 0,\,\,\forall x \in \mathbb{R}\).

Lời giải chi tiết:

Đáp án A : \(y' =  - 3{x^2} + 4x - 10\)

Ta có : \(\Delta ' = 4 - \left( { - 3} \right).\left( { - 10} \right) =  - 26 < 0\) và \(a =  - 3 < 0\) nên \(y' < 0,\forall x \in \mathbb{R}\)

Do đó hàm số nghịch biến trên \(\mathbb{R}\).

Đáp án B : TXĐ : \(D = \mathbb{R}\backslash \left\{ 1 \right\}\).

Ta có: \(y' = \dfrac{{ - 11}}{{{{\left( {x - 1} \right)}^2}}} < 0,\,\,\forall x \ne 1\) nên hàm số nghịch biến trên các khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\).

Đáp án C : hàm bậc hai không đơn điệu trên \(\mathbb{R}\).

Đáp án D : hàm bậc nhất có \(a = 1 > 0\) nên đồng biến trên \(\mathbb{R}\).

Chọn A.


>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.



Gửi bài