Câu hỏi
Cho số phức \(z\) thỏa mãn \(iz = 1 + 3i.\) Modun của \(z\) bằng:
- A \(\sqrt {10} \)
- B \(4\)
- C \(2\sqrt 2 \)
- D \(2\)
Phương pháp giải:
Cho số phức \(z = a + bi\,\,\left( {a,\,\,b \in \mathbb{R}} \right),\) ta có modun của số phức \(z\) là:\(\left| z \right| = \sqrt {{a^2} + {b^2}} .\)
Lời giải chi tiết:
Ta có: \(iz = 1 + 3i\) \( \Rightarrow z = \dfrac{{1 + 3i}}{i} = \dfrac{{i + 3{i^2}}}{{{i^2}}} = 3 - i\) \( \Rightarrow \left| z \right| = \sqrt {{3^2} + 1} = \sqrt {10} .\)
Chọn A.