Câu hỏi

Cho số phức \(z = 2 - 3i.\) Trên mặt phẳng tọa độ, điểm biểu diễn số phức \({\rm{w}} = \overline z .i\) là điểm nào dưới đây?

  • A \(D\left( { - 2; - 3} \right)\)
  • B \(C\left( { - 3; - 2} \right)\)
  • C \(B\left( {2; - 3} \right)\)
  • D \(A\left( { - 3;\,\,2} \right)\)

Phương pháp giải:

Cho số phức \(z = x + yi\,\,\left( {x,\,\,y \in \mathbb{R}} \right)\) \( \Rightarrow \overline z  = x - yi.\)

Số phức \(z = x + yi\,\,\left( {x,\,\,y \in \mathbb{R}} \right)\) có điểm biểu diễn là \(M\left( {x;\,\,y} \right).\)

Lời giải chi tiết:

Ta có: \(z = 2 - 3i \Rightarrow \overline z  = 2 + 3i\)

\( \Rightarrow {\rm{w}} = \overline z i = \left( {2 + 3i} \right)i = 2i + 3{i^2} =  - 3 + 2i.\)

\( \Rightarrow \) Số phức \(w\) có điểm biểu diễn là \(A\left( { - 3;\,\,2} \right).\)

Chọn D.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay