Câu hỏi

Trong không gian tọa độ \(Oxyz\), đường thẳng đi qua điểm \(M\left( { - 1;1;0} \right)\) và vuông góc với mặt phẳng \(\left( \alpha  \right):\,\,5x - 10y - 15z - 16 = 0\) có phương trình tham số là:

  • A \(\left\{ \begin{array}{l}x =  - 1 + 5t\\y = 1 + 10t\\z = 15t\end{array} \right.\)
  • B \(\left\{ \begin{array}{l}x =  - 5t\\y =  - 10t\\z =  - 15t\end{array} \right.\)
  • C \(\left\{ \begin{array}{l}x =  - 3 - t\\y = 5 + 2t\\z = 6 + 3t\end{array} \right.\)
  • D \(\left\{ \begin{array}{l}x =  - 1 + 5t\\y = 1 - 10t\\z = 15t\end{array} \right.\)

Phương pháp giải:

- \(d \bot \left( \alpha  \right) \Rightarrow \overrightarrow {{u_d}}  = \overrightarrow {{n_\alpha }} \) với \(\overrightarrow {{u_d}} ,\,\,\overrightarrow {{n_\alpha }} \) lần lượt là VTCP của đường thẳng \(d\) và VTPT của \(\left( \alpha  \right)\).

- Phương trình đường thẳng đi qua \(M\left( {{x_0};{y_0};{z_0}} \right)\) và có 1 VTCP \(\overrightarrow u \left( {a;b;c} \right)\) có phương trình \(\left\{ \begin{array}{l}x = {x_0} + at\\y = {y_0} + bt\\z = {z_0} + ct\end{array} \right.\,\,\left( {t \in \mathbb{R}} \right)\) 

Lời giải chi tiết:

Mặt phẳng \(\left( \alpha  \right):\,\,5x - 10y - 15x - 16 = 0\) có 1 VTPT \(\overrightarrow {{n_\alpha }}  = \left( {5; - 10; - 15} \right)\).

\( \Rightarrow \) Đường thẳng vuông góc với \(\alpha \) có 1 VTCP \(\overrightarrow u  =  - \dfrac{1}{5}\overrightarrow {{n_\alpha }}  = \left( { - 1;2;3} \right)\).

Chọn C.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay